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Abstract

In the present work some topics in the context of principal components are studied
when the matrix of covariances is singular. In particular, the maximum likelihood
estimates of the eigenvalues and the eigenvectors of the sample covariance matrix are
obtained. Also, the likelihood ratio statistics for proving the hypothesis of sphericity
and the equality of some eigenvalues are found.
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1 Introduction

Recently, several works have appeared in the context of singular random
matrix distributions and compatible subjects; see Uhlig (1994), Dı́az-Garćıa
and Gutiérrez (1997), Dı́az-Garćıa and González-Faŕıas (1999), Dı́az-Garćıa
and Gutiérrez-Jáimez (2005), Dı́az-Garćıa and González-Faŕıas (2005a), Dı́az-
Garćıa and González-Faŕıas (2005a), among others. Although, since 1968,
Khatri had already proposed and solved several problems related with that
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topic, in particular, about the multivariate general linear model, see Khatri
(1968).

A central problem in the analysis of multivariate data is the reduction of the
dimensionality, this is: if it is possible to represent, with certain precision,
the values of m variables, by a smaller subgroup of k < m variables, then
it would have been possible to reduce the dimension of the problem at the
cost of a little loss of information. That is the object of principal components
analysis. This is, given N observations of m variables, we ask for the possibility
of representing sensibly this information with a smaller number of variables,
which are defined as linear combinations of the original ones. When the study
simply entails to make a descriptive analysis, the possible linear dependence
between the variables is not significant. But when it is tried to make inference
the situation changes completely.

Formally, if X′ = (X1
... · · · ...XN) denotes the observation matrix X ∈ <N×m,

then X has a distribution respect to the Lebesgue measure <N×m(≡ <Nm).
Nevertheless, if there is a linear dependence between the columns, for example
r < m are linearly independent, then X now has density with respect to the
Hausdorff measure, see Dı́az-Garćıa et al. (1997) or Dı́az-Garćıa and González-
Faŕıas (2005a). Still more, if it is assumed that the sample comes from a
population with m−dimensional normal ditribución, X ∼ NN,r

N×m(1µ′, IN⊗Σ),
where ⊗ denotes the Kronecker product and r denotes the rank of the matrix
Σ; i.e. if X has singular matrix normal distribution (see Dı́az-Garćıa et al.
(1997) and Khatri (1968)), whose density exists with respect to the Hausdorff
measure; then, in such case, as much the density as the measure are not unique
and their explicit forms will depend on the base and the set of coordinates
selected for the subspace in where such density exists, see Dı́az-Garćıa and
González-Faŕıas (2005a). An analogous situation appears with the distribution
of the sample covariance matrix S, in that case nS has a m− dimensional
singular Wishart distribution of rank r, nS ∼ Wr

m((N − 1),Σ) whose density
also exists with respect to the Hausdorff measure defined in the corresponding
subspace, see Dı́az-Garćıa et al. (1997), Dı́az-Garćıa and Gutiérrez (1997) and
Dı́az-Garćıa and González-Faŕıas (2005b).

Under the condition of linear dependence between the variables, we will derive
the maximum likelihood estimates of the eigenvalues and the eigenvectors
of sample covariance matrix; also, we will find the joint distribution of the
eigenvalues, see theorems, 1 and 2, respectively. The likelihood ratio statistics
are obtained for proving the hypothesis of sphericity and the equality of some
eigenvalores; see theorems 4 y 5, respectively.
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2 Principal components

In this section some ideas on principal components are extended to the case in
that the matrix of covariances is singular. But first let us consider the following
notations:

The set of matrices H1 ∈ <m×r such that H ′
1H1 = Ir is called the Stiefel

manifold, and it is denoted as Vr,m. In particular, Vm,m defines the group of
orthogonal matrices, which we will denote by O(m).

Let us suppose a random sample X1, . . . , XN , N = n + 1, such that Xi ∼
N r

m(µ,Σ), Σ ≥ 0 where the rank of Σ = r and µ ∈ <m . Then the mean X̄
and the matrix S of sample covariances are given by

A = nS =
N∑

i=1

(Xi − X̄)(Xi − X̄)′ = X′
(
IN − 1

N
1N1′N

)
X (1)

X̄ =
1

N

N∑

i=1

Xi (2)

respectively; where X′ = (X1
... · · · ...XN) and 1′N = (1, . . . , 1). This is, the max-

imum likelihood estimates in the singular case agrees with the estimates in
the non singular case, see Rao (1973, p. 532). Something important to notice
is that in the singular case the estimates S and X̄, no longer they exist with
respect to the Lebesgue measure in <m(m+1)/2 and <m respectively, but with
respect to the measures of Hausdorff (dS) and (dX̄) defined in Dı́az-Garćıa
and González-Faŕıas (2005a).

Now, let l1, . . . , lr be the nonzero eigenvalues of S. Then, these are different
with probability one and they estimate to the nonzero eigenvalues λ1 ≥ · · · ≥
λr of Σ. Besides, let Q = (q1

... · · · ...qm) = (Q1
...Q2) ∈ O(m) such that Q1 ∈ Vr,m

and Q2 ∈ Vm−r,m (a function of Q1), with qi the normalized eigenvalues of S
such that

Q′SQ =




Q′
1

Q′
2


 S(Q1

...Q2) =




Q′
1SQ1 Q′

1SQ2

Q′
2SQ1 Q′

2SQ2


 =




Lr 0

0 0




This is

S = Q




Lr 0

0 0


 Q′

with Lr = diag(l1, . . . , lr) or alternatively S = Q1LrQ
′
1. Note that the eigen-

vectors qi are estimates of the eigenvectors hi of Σ, where H = (h1
... · · · ...hm) =
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(H1
...H2) ∈ O(m) such that

H ′ΣH =




H ′
1

H ′
2


 Σ(H1

...H2) =




H ′
1ΣH1 H ′

1ΣH2

H ′
2ΣH1 H ′

2ΣH2


 =




∆r 0

0 0




with H1 ∈ Vr,m and H2 ∈ Vm−r,m (a function of H1). Observe that if h1j ≥ 0
for every j = 1, . . . , m, then the representation of Σ = H1∆rH

′
1 is unique

if λ1 > · · · > λr > 0. Similarly with the probability one, the representation
S = Q1LrQ

′
1 is unique if q1j ≥ 0 for every j = 1, . . . , m.

Assuming that does not exist multiplicity between the eigenvalores of the
matrix Σ, we have the following results.

Theorem 1 The maximum likelihood estimates of ∆r and H1 are ∆̂r =
(n/N)Lr and Ĥ1 = (ĥ1, . . . , ĥr) = Q1 where ĥi is an eigenvector of the maxi-
mum likelihood estimate Σ̂ = (n/N)S of Σ.

Proof. From Dı́az-Garćıa et al. (1997) it is obtained that

dL(µ,Σ) =
1

(2π)Nr
∏r

i=1 λ
N/2
i

etr
{
−1

2
Σ−(X− 1µ′)′(X− 1µ)

}
(dX)

= (2π)−Nr
r∏

i=1

λ
−N/2
i etr

{
−1

2
Σ−[A + N(X̄ − µ)(X̄ − µ)′]

}
(dX),

where etr(·) = exp(tr(·)). So

L(µ,Σ) = (2π)−Nr
r∏

i=1

λ
−N/2
i etr

{
−1

2
Σ−A− N

2
(X̄ − µ)′Σ−(X̄ − µ)]

}
.

Observing that for each Σ, L(µ,Σ) is maximum when µ = X̄,

L(X̄,Σ) = (2π)−Nr
r∏

i=1

λ
−N/2
i etr

{
−1

2
Σ−A

}

Simply it reduces to maximize the function

h(Σ) = log L(X̄,Σ) = −Nr log(2π)− N

2

r∑

i=1

log λi − 1

2
tr

{
Σ−A

}
.

Let us consider the spectral decompositions Σ = H1∆rH
′
1 and A = nS =

nQ1LrQ
′
1 with H1 ∈ Vr,m, Q1 ∈ Vr,m, ∆r = diag(λ1, . . . , λr) and ÃLr =

diag(l1, . . . , lr) and note that Σ− = H1∆
−1
r H ′

1. Then, ignoring the constant,

h(Σ) =−N

2

r∑

i=1

log λi − n

2
tr

{
H1∆

−1
r H ′

1Q1LrQ
′
1

}
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=−N

2

r∑

i=1

log λi − n

2
tr

{
∆−1

r P ′
11LrP11

}
(3)

where P11 = Q′
1H1. Also, notice that

Q′H =




Q′
1

Q′
2


 (H1

...H2) =




Q′
1H1 Q′

1H2

Q′
2H1 Q′

2H2


 =




P11 P12

P21 P22


 = (P1

...P2) (4)

with P1 ∈ Vr,m. Now, by the problem 9.4 in Muirhead (1982, p. 427) we have
that

tr(UP ′
1V P1) ≤

r∑

i=1

uivi

where U = diag(u1, . . . , ur), u1 > · · · > ur > 0; V = diag(v1, . . . , vr), v1 >
· · · > vr > 0 and P1 ∈ Vr,m, the equality holds only with the 2r matrices m×r
of the form

P1 =




P11

P21


 =




±Ir

0m−r×r


 .

Applying this result to the term where the trace appears in (3), with U = ∆−1
r

and V = Lr, we have that this term is maximized with respect to P11 when
P11 = ±Ir. Then the maximum of (3) with respect to P11 is

h(λi) = −N

2

r∑

i=1

log λi − n

2

r∑

i=1

li
λi

. (5)

Note that, by (4) QP = H, i.e. Q(P1
...P2) = (H1

...H2), then Ĥ1 = QP̂1 is a
maximum likelihood estimate of H1. Note that in this case, P1 ∈ Vr,m is any

matrix such that h1,j ≥ 0 for every j = 1, . . . , r, but given that Q = (Q1
...Q2)

is such that q1,j ≥ 0 for every j = 1, . . . , r; then P1 can be taken such that

P ′
1 = (Ir

...0), thus Ĥ1 = Q1 is a maximum likelihood estimate of H1. In order
to conclude the demonstration, we just differentiate (5) with respect to λi,
i = 1, . . . , r and we equal to zero, like this

λ̂i =
n li
N

, i = 1, . . . , r

then we get the desired result.

Now we are interested in finding the joint distribution of the eigenvalues
l1, . . . , lr, l1 > · · · > lr > 0; for it, consider the fact that A = nS ∼ Wr

m(n,Σ),
see Dı́az-Garćıa et al. (1997) or Dı́az-Garćıa and González-Faŕıas (2005b).
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Theorem 2 Let nS ∼ Wr
m(n,Σ), n > m − 1, Σ ≥ 0 of rank r. Then the

joint density function of the eigenvaluesl1, . . . , lr of S, can be expressed in the
form

fli(l1, . . . , lr) =
πmr/2

(
n

2

)nr/2 ∏r
i=1 l

(n+m−1)/2−r
i

∏r
i<j(li − lj)

Γr[n/2]Γr[m/2]
∏r

i=1 λ
n/2
i

0F
m
0

(
−n

2
Lr,Σ

−
)

,

where Lr = diag(l1, . . . lr), l1 > · · · > lr > 0 and

0F
m
0

(
−n

2
Lr,Σ

−
)

=
∞∑

k=1

∑
κ

Cκ

(
−n

2
Lr

)
Cκ

(
Σ−)

k!Cκ(I)

see Muirhead (1982, p. 259).

Proof. The demonstration is followed from Dı́az-Garćıa et al. (1997) or Dı́az-
Garćıa and González-Faŕıas (2005b).

Next we propose the version for the singular case of the sphericity test

H0 : Σ = λ




Ir 0

0 0


 . (6)

Observe that if this hypothesis is accepted we conclude that all the nonzero
principal components have the same variance and they equally contribute to
the total variance, therefore it is not possible to reduce the dimension of the
problem. If the hypothesis is rejected it is possible, for example, that the
r−1 smallest eigenvalues are equal, being able to reduce the dimension of the
problem to the first principal component, and so on. In the same way we will
have been interested in proving the following null hypothesis sequentially

H0,k : λk+1 = · · · = λm

for k = 0, 1, . . . , m− 2.

Given the importance of this topic and others in the statistics, next we propose
the sphericity test for the singular case, but before it consider the following
observation.

Remark 3 Note that in the singular case, when there is sphericity, Σ not
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necessarily has the form (6). In general it will have the form Σ = λI, where

I = M ′




Ir 0

0 0


 M,

and M ∈ O(m) is a permutation matrix (i.e in M ′BM , M ′ permutes the
rows of B and M permutes the columns of B). Nevertheless, without loss of
generality we can assume that Σ has the form (6), thus we have to consider
the necessary permutations of rows and columns of Σ = λI to write it in the
form (6), but now the action is over the matrix S (or the matrix A), in such
way that if S1 is the original sample covariance matrix and now S is defined
as S = MS1M

′, then

S =




S11 S12

S21 S22


 ,

with S11 > 0 and the rank (S11)= rank (S1)= rank (S). Note this does not
change the likelihood function, because:

(1) If chi(A) denotes the eigenvalores of matrix A,

chi(λI) = chi(λMIM ′) = chi


λ




Ir 0

0 0





 .

(2) Also,

tr
(
λ−1I−S1

)
= tr

(
λ−1I−M ′MS1M

′M
)

= tr
(
λ−1MI−M ′MS1M

′)

= tr


λ−1




Ir 0

0 0


 S




= tr


λ−1(Ir

...0)S




Ir

0





 = tr λ−1S11 = λ−1

r∑

i=1

li

where l1, . . . , lr are the nonzero eigenvalores of S.

Theorem 4 Let X1, . . . , XN be independent N r
m(µ,Σ) random vectors. The

likelihood ratio test of size α of

H0 : Σ = λ




Ir 0

0 0


 ,
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with λ is unspecified, rejects H0 if

V =

r∏

i=1

ai

(
1

r

r∑

i=1

ai

)r ≤ cα

where cα is chosen so that the size of the test is α and ai are the nonzero
eigenvalues of A.

Proof. The likelihood function is given by

L(µ,Σ) = (2π)−Nr
r∏

i=1

λ
−N/2
i etr

{
−1

2
Σ−A− N

2
(X̄ − µ)′Σ−(X̄ − µ)]

}
.

Taking into account the Remark 3 and denoting

Ir =




Ir 0

0 0


 =




Ir

0


 (Ir0),

the likelihood ratio is given by

Λ =

sup
µ∈<m, λ>0

L (µ, λIr)

sup
µ∈<m, Σ≥0

L(µ,Σ)
. (7)

Under the alternative hypothesis
(
µ̂, Σ̂

)
=

(
X̄, 1

N
A

)
, denoting the nonzero

eigenvalues of A by ai, i = 1, . . . , r and eliminating the constant, we get

sup
µ∈<m, Σ≥0

L(µ,Σ) = NNr/2
r∏

i=1

a
−N/2
i etr

{
−N

2
A−A

}

= NNr/2
r∏

i=1

a
−N/2
i exp

{
−Nr

2

}
(8)

but the matrix A−A represents a projection, then tr(A−A) = rank of (A−A) =
r.

Now, eliminating the constant

sup
µ∈<m, λ>0

L (µ, λIr) = sup
µ∈<m, λ>0

λ−Nr/2 etr
{
− 1

2λ
IrA− N

2λ
(X̄ − µ)′Ir(X̄ − µ)]

}
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= sup
λ>0

λ−Nr/2 etr



−

1
2λ


 Ir

0


 (Ir0)A





= sup
λ>0

λ−Nr/2 etr
{
− 1

2λ
A11

}
(9)

where

A11 = (Ir
...0)A




Ir

0


 ,

taking natural logarithm. And noticing that tr A11 =
∑r

i=1 ai, then we get

L (µ, λIr) = log L (µ, λIr) = −rN

2
log λ− 1

2λ

r∑

i=1

ai,

where the ai denote the nonzero eigenvalues of the matrix A, see Remak 3.

Thus, deriving and equaling to zero we get

λ̂ =
1

Nr

r∑

i=1

ai.

Then

L
(
X̄, λ̂Ir

)
=

(
1

Nr

r∑

i=1

ai

)−Nr/2

exp
{
−Nr

2

}
. (10)

Using (8) and (10) in (7), we obtain

V = Λ2/N =

r∏

i=1

ai

(
1

r

r∑

i=1

ai

)r .

Then H0 is rejected for small values of V .

Alternatively, observe that the statistics V is given by

V =

r∏

i=1

li
(

1

r

r∑

i=1

li

)r ,

where l1, . . . , lr are the nonzero eigenvalues of the matrix of covariances S.
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Similarly to the nonsingular case, we can say that a test of asymptotic size
alpha rejects H0 if

−
(
n− 2r2 + r + 2

6r

)
log V > c

(
α; 1

2
(r + 2)(r − 1)

)
,

where c(α; b) denotes the upper 100α% point of the χ2 distribution with b
degrees freedom, see Muirhead (1982, p. 406).

Theorem 5 Given a sample of size N from N r
m(µ,Σ) distribution, the like-

lihood ratio statistic for testing the null hypothesis

H0,k : λk+1 = · · ·λr(= λ, unknoun), k = 0, 1, . . . , (r − 2)

is Vk = Λ2/N , where

Vk =

r∏

i=k+1

li


 1

r − k

r∑

i=k+1

li




r−k

Proof. The ratio of likelihood is given by

Λ =

sup
H0,k

L (µ,Σ)

sup
µ∈<m, Σ≥0

L(µ,Σ)
. (11)

Where µ and Σ are not restricted. Then

sup
µ∈<m, Σ≥0

L(µ,Σ) =
(

N

n

)Nr/2 r∏

i=1

l
−N/2
i exp

{
−Nr

2

}
, (12)

see the equation (8).

Using the same technique that in proof of Theorem 1, under the null hypothesis
H0,k and ignoring the constant, we obtain

h(λi) = −N

2

r∑

i=1

log λi − n

2

r∑

i=1

li
λi

, (13)

see equation (5).
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But now

∆r =




∆1 0

0 λIr−k


 ,

with ∆1 = diag(λ1, . . . , λk), λ1 > · · · > λk > 0, then (13) can be written as
follows

h(λi, λ) = −N

2

k∑

i=1

log λi − N(r − k)

2
log λ− n

2

k∑

i=1

li
λi

− n

2λ

r∑

i=k+1

li. (14)

Differentiating (14) with respect to λi, i = 1, . . . , k and λ and equaling to zero
such derivatives we get

λ̂i =
n

N
li, i = 1, . . . , k and λ̂ =

n

N

1

(r − k)

r∑

i=k+1

li.

Then, ignoring the constant,

sup
H0,k

L (µ,Σ) =
(

N

n

)Nr/2

 1

r − k

r∑

i=k+1

li



−N(r−k)/2 (

k∏

i=1

l
−N/2
i

)
exp{−Nr/2}.

Thus the statistics of likelihood ratio for testing H0,k is given by

Vk = ΛN/2 =




sup
H0,k

L (µ,Σ)

sup
µ∈<m, Σ≥0

L(µ,Σ)


 =

r∏

i=k+1

li


 1

r − k

r∑

i=k+1

li




r−k ,

then H0,k is rejected for small values of Vk, and the proof is completed.

Finally, observe that by a similarity with the non singular case under the null
hypothesis, the limiting distribution of the statistics

−
(
n− k − 2p2 + p + 2

6p
+

k∑

i=1

l̄2p
(li − l̄2p)

)
log Vk,

is χ2 with (p + 2)(p − 1)/2 degrees of freedom, where p = r − k and l̄p =
1
p

∑r
i=k+1 li, see Muirhead (1982, p. 409).
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positions: Jacobians, J. Multivariate Anal. 93(2) (2005a) 196-212.
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